

For use in beef cattle (including suckling calves), non-lactating dairy cattle (including dairy calves), veal calves, and swine. Not for use in female dairy cattle 20 months of age or older. CAUTION: Federal (USA) law restricts this drug to use by or on the order of a licensed veterinarian.

DESCRIPTION AROWN Injectable Solution is a ready-to-use sterile parenteral preparation containing tulathromycin, a semi-synthetic macrolide antibiotic of the subclass triamilide. Each mL of AROWN contains 100 mg of tulathromycin, 500 mg propylene glycol, 19.2 mg citric acid and 5 mg monothioglycenol. Sodium hydroxide or hydrochloric acid may be added to adjust pH. AROWN konsists of an equilibated mixture of two isomeric forms of tulathromycin in a 9:1 ratio. Structures of the isomers are shown

The chemical names of the isomers are (2R,3S,4R,5R,8R,10R,11R,12S,13S,14R)-13-[[2,6-dideoxy Ine chemical names of the somers are (24, 53, 44, 54, 64, 64, 104, 114, 125, 153, 1447, 154), 26 outcustry 3. Creathyl-3. Comethyl-4. C[(nopylamino)methyl] Act-Iboh bencypranos)[loy]-2 ethyl-3.4, 10-trihydroxy-3,5,8,10,12,14-hexamethyl-11-[[3,4,6 trideoxy-3 (dimethylamino)/B-D-sylo-hexopyranos)[loxy]-1 oxa-6-azayclopentadecan-15 one and (28,37,64,88,97,103, 151,218) 11[[2,6-dideoxy-3C-methyl-4.C][(progylamino)methyl]-act-liob-hexopyranosyl] oxy]-2 {[17,28], 12-dihydroxy-1-methylbuty]]-8-hydroxy-3,6,8,10,12-pentamethyl-9-[[3,4,6-trideoxy-3(dimethylamino)]-B-D-xylohexopyranosyl]oxy]-1-oxa-4-azayclotridecan-13-one, respectively. INDICATIONS

INDICATIONS Beef and Non-Lactating Dairy Cattle BRD – AROWN Injectable Solution is indicated for the treatment of bovine respiratory disease (BRD) associated with Mannheimia haernolytica, Pasteurella multicoda, Histophilus sonni, and Mycoplasma bovis; and for the control of respiratory disease in cattle at high risk of developing BRD associated with Mannheimia haernolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis.

Neural Market and Market and Alexandra a Alexandra and Alexa Alexandra and Alexandra a necrobacillosis) associated with Fusobacterium necrophorum and Porphyromonas levi

Social Construction of the second construction o

Swine

Swine AROWN Injectable Solution is indicated for the treatment of swine respiratory disease (SRD) associated with Actinobacillus pleuropneumoniae, Pasteurella multocida, Bordetella bronchiseptica, Haemophilus parasuis, and Mycoplasma hyopneumoniae; and for the control of SRD associated with Actinobacillus pleuropneumoniae, Pasteurella multocida, and Mycoplasma hyopneumoniae in groups of pigs where SRD has been diagnosed. DOSAGE AND ADMINISTRATION

Cattle

Inject subcutaneously as a single dose in the neck at a dosage of 2.5 mg/kg (1.1 mL/100 lb) body weight (BW). Do not inject more than 10 mL per injection site. Table 1. AROVYN Cattle Dosing Guide

Animal Weight (Pounds)	Dose Volume (mL)	Animal Weight (Pounds)	Dose Volume (mL)
100	1.1	600	6.8
200	2.3	700	8.0
300	3.4	800	9.1
400	4.5	900	10.2
500	5.7	1000	11.4

Swine Inject intramuscularly as a single dose in the neck at a dosage of 2.5 mg/kg (0.25 mL/22 lb) BW. Do not inject more than 2.5 mL per injection site.

Table 2. AROVYN Swine Dosing Guide

Animal Weight (Pounds)	Dose Volume (mL)	Animal Weight (Pounds)	Dose Volume (mL)	
15	0.2	170	1.9	
30	0.3	190	2.2	
50	0.6	210	2.4	
70	0.8	230	2.6	
90	1.0	250	2.8	
110	1.3	270	3.1	
130 1.5		290	3.3	
150	17			

CONTRAINDICATIONS

The use of AROVYN Injectable Solution is contraindicated in animals previously found to be hypersensitive to the drug

WARNINGS

FOR USE IN ANIMALS ONLY. NOT FOR HUMAN USE. KEEP OUT OF REACH OF CHILDREN. NOT FOR USE IN CHICKENS OR TURKEYS.

Cattle Cattle Cattle intended for human consumption must not be slaughtered within 18 days from the last treatment. This drug is not approved for use in female adiv; cattle 20 months of age or older, including dry dairy cows. Use in these cattle may cause drug residues in milk and/or in calves born to these cows.

Swine Swine intended for human consumption must not be slaughtered within 5 days from the last treatment.

PRECAUTIONS

The effects of AROVYN on bovine reproductive performance, pregnancy, and lactation have not been determined. Subcutaneous injection can cause a transient local tissue reaction that may result in trim loss of edible tissue at slaughter. Swine

Swine The effects of AROVYN on porcine reproductive performance, pregnancy, and lactation have not been determined. Intramuscular injection can cause a transient local tissue reaction that may result in trim loss of edible tissue at slaughter.

ADVERSE REACTIONS Cattle

In one BRD field study, two calves treated with tulathromycin injection at 2.5 mg/kg BW exhibited transient hypersalivation. One of these calves also exhibited transient dyspnea, which may have been related to pneumonia.

Swine In one field study, one out of 40 pigs treated with tulathromycin injection at 2.5 mg/kg BW exhibited mild salivation that resolved in less than four hours.

POSTAPPROVAL EXPERIENCE

POSTAPPROVALEXPERIENCE The following adverse events are based on post approval adverse drug experience reporting. Not all adverse events are reported to the FDA CVM. It is not always possible to reliably estimate the adverse event frequency or establish a causal relationship to product exposure using these data. The following adverse events are listed in decreasing order of reporting frequency in cattle: Injection site reactions and anaphylaxiSanaphylactoid reactions. For a complete listing of adverse reactions for tulathromycin injection of the order of the OLM experiment of the OLM experiment of the order of the order of the OLM experiment of the order of the OLM experiment of the order of the order of the order of the OLM experiment of the order of the order of the OLM experiment of the order of th injectable solution reported to the CVM see: http://www.fda.gov/reportanimalae.

CLINICAL PHARMACOLOGY

Cunical Praktwork of the second secon and the characteristics of its antimicrobial effects has not been characterized, as a class, macrolides tend to be primarily bacteriostatic, but may be bactericidal against some pathogens. They also tend to exhibit concentration independent killing: the rate of bacterial eradication does not change once serum drug concentrations reach 2 to 3 times the minimum inhibitory concentration (MIC) of the targeted pathogen. Under these conditions, the time that serum concentrations remain above the MIC becomes the major determinant of antimicrobial activity. Macrolides also exhibit a post-antibiotic effect(PAE), the duration of which tends to be both drug and pathogen dependent. In general, by increasing the macrolide concentration and the exposure time, the PAE will increase to some maximal duration. Of the humutables. Concentration and enconcentration tends to be Indexang the Inaconice Onterination and the exposure time, the PAC with indexase to Some Haxin duration. Of the two variables, concentration and exposure time, and exposure time, and the exposure time and the exposure ti

Cattle

Cattle Following subcutaneous administration into the neck of feeder calves at a dosage of 2.5 mg/kg BW, Following subcutaneous administration into the neck of feeder calves at a dosage of 2.5 mg/kg BW, tulathromyrin is rapidly and nearly completely absorbed. Peak plasma concentrations generally occur within 15 minutes after dosing and product relative bioavailability exceeds 90%. Total systemic dearance is approximately 170 mUhr/kg. Julathromyrin distributes extensively with body tissues, as evidenced by volume of distribution values of approximately 11 L/kg in healthy ruminating calves.³ This extensive volume of distribution values of approximately 11 L/kg in healthy ruminating calves.³ This extensive volume of distribution largely responsible for the long elimination half-life of this compound lapproximately 2.75 days in the plasma (based on quantifiable terminal plasma drug concentrations) versus 8.75 days for total lung concentrations (based on data from healthy animals). Linear pharmacokinetic afferences are observed in castrated male versus female calves. ³Clearance and volume estimates are based on intersubject comparisons of 2.5 mg/kg BW administered by either subcutaneous or intersubject comparisons of 2.5 mg/kg BW administered by either subcutaneous or intravenous injection.

vine

Swine Following intramuscular administration to feeder pigs at a dosage of 2.5 mg/kg BW, tulathromycin is completely and rapidly absorbed ($T_{\rm pay}$ "0.25 hour). Subsequently, the drug rapidly distributes into body tissues, achieving a volume of distribution exceeding 15 L/kg. The free drug is rapidly deared from the systemic circulation ($L_{\rm system}$ = 1.87 m/L/kg). However, it has a long terminal elimination half-life (60 to 90 hours) owing to its extensive volume of distribution. Although pulmonary tulathromycin concentrations are substantially higher than concentrations observed in the plasma, the drinical significance of these findings is undetermined. There are no gender differences in swine tulathromycin plasmacokinetics.

MICROBIOLOGY Cattle

Caue Tulathromycin has demonstrated in vitro activity against Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis, four pathogens associated with BRD; against Moraxella bovis associated with IBK; and against Fusobacterium necrophorum and Porphyromonas

Moraxella bovis associated with IBK; and against *Fusobacterium necrophorum* and *Porphyromonas* levii associated with bovine foot rot. The MICs of ultathromycin against indicated BRD and IBK pathogens were determined using methods recommended by the Clinical and Laboratory Standards Institute (CLSI, M31A2). The MICs against foot rot pathogens were also determined using methods recommended by the CLSI (M11A6). All MIC values were determined using methods recommended by the CLSI (M11A6). All MIC values were determined using methods recommended by the CLSI (M11A6). All MIC values were determined using methods recommended by the CLSI (M11A6). All MIC values were determined using methods recommended by the CLSI in therapeutic studies, isolates were also determined in the rapeutic studies, isolates were obtained from pretreatment nasopharyngeal swabs from all study calves, and from lung swabs or lung tissue of saline treated calves that died. In the at-risk studies, isolates were obtained from nasopharyngeal swabs of saline treated non-responders, and from lung swabs or lung tissue of saline-treated calves that died. The results are shown in Table 3. MBK - The MICS of fullathromycin were determined for *Moraxella bovis* isolates obtained from

treated calves that died. The results are shown in Table 3. IBK-The NICs of huldritromycin were determined for *Moraxella bovis* isolates obtained from calves enrolled in IBK field studies in the U.S. in 2004. Isolates were obtained from pre-treatment conjunctival swabs of calves with dinical signs of IBK enrolled in the tulathromycin injection-treated and saline-treated groups. The results are shown in Table 3. Foot Rot-The MICs of tulathromycin were determined for *Fusobacterium necrophorum* and *Pophyromonas*. *Bevio* batanet form cattle enrolled in foot to tifed Audies in the U.S. and Canada in 2007. Isolates were obtained from pretreatment interdigital biopsies and swabs of cattle with clinical sions of foot tote enrolled in the tulathromycin incircion-treated and eliane-treated groups. The results

signs of foot rot enrolled in the tulathromycin injection-treated and saline-treated groups. The results shown in Table 3.

Table 3. Tulathromycin minimum inhibitory concentration (MIC) values* for indicated pathogens isolated from field studies evaluating BRD and IBK in the U.S. and from foot rot field studies in the U.S. and Canada.

Indicated pathogen	Date isolated	No. of isolates	MIC ₅₀ ** (ug/mL)	MIC ₉₀ ** (ug/mL)	MIC range (ug/mL)	
Mannheimia haemolytica	1999	642	2	2	0.5 to 64	
Pasteurella multocida	1999	221	0.5	1	0.25 to 64	
Histophilu somni	1999	36	4	4	1 to 4	
Mycoplasma bovis	1999	43	0.125	1	≤ 0.063 to > 64	
Moraxella bovis	2004	55	0.5	0.5	0.25 to 1	
Fusobacterium necrophorum	2007	116	2	64	≤ 0.25 to > 128	
Porphyromonas levii	2007	103	8	128	≤ 0.25 to > 128	

* The correlation between *in vitro* susceptibility data and clinical effectiveness is unknown. ** The lowest MIC to encompass 50% and 90% of the most susceptible isolates, respectively.

Swine

In vitro activity of tulathromycin has been demonstrated against Actinobacillus pleuropneumoniae, In vitro activity of tulathromycin has been demonstrated against Actinobacillus pleuropneumoniae, Pasteurella multocida, Bordettella bronchiseptica, Haemophilus parsuis, and Mycoplasma hyopneumoniae. The MICs of tulathromycin against indicated SRD pathogens were determined using methods recommended by the clinical and Laboratory Standards Institute (CLSI, M31 4 and M31 43). MICs for Haemophilus parsuis were determined using Veterinary Fastidious Medium and were incubated up to 48 hours at 35 to 37°C in a CO2-enriched atmosphere. All MIC values were determined using the 9:1 isomer ratio of this compound. Isolates obtained in 2000 and 2002 were from lung samples from saline-treated pigs and non-treated sentinel pigs enrolled in freatment of SRD field studies in the U.S. and Canada. Isolates obtained in 2008 were from lung samples from saline-treated and tulathromycin injection-treated pigs enrolled in the Control of SRD field study in the U.S. and Canada. The results are shown in Table 4.

Table 4. Tulathromycin minimum inhibitory concentration (MIC) values* for indicated pathogens isolated from field studies evaluating BRD and IBK in the U.S. and from foot rot field studies in the U.S. and Canada.

Indicated pathogen	Date isolated	No. of isolates	MIC ₅₀ ** (ug/mL)	MIC ₉₀ ** (ug/mL)	MIC range (ug/mL)	
Actinobacillus pleuropneumonia	2002-2002 2007-2008	135 88	16 16	32 16	16 to 32 4 to 32	
Haemophilus parasuis	2000-2002	31	1	2	0.25 to > 64	
Pasteurella multocida	2002-2002 2007-2008	55 40	1 1	2 2	$0.5 \text{ to} > 64 \le 0.03 \text{ to} > 2$	
Bordetella bronchiseptica	2002-2002	42	4	8	2 to 8	

* The correlation between in vitro susceptibility data and clinical effectiveness is unknown. ** The lowest MIC to encompass 50% and 90% of the most susceptible isolates, respectively

EFFECTIVENESS

Cattle BRD – In a multi-location field study, 314 calves with naturally occurring BRD were treated with tulathromycin injection. Responses to treatment were compared to saline-treated controls. A cure was defined as a calf with normal attitude/activity, normal respiration, and a rectal temperature of \leq 104% for Day 14. The cure rate was significantly higher ($P \leq 0.05$) in tulathromycin injection-treated calves (78%) compared to saline-treated calves (74%). There were two BRD-related deaths in the tulathromycin injection-treated calves compared to nine BRD-related deaths in the saline-treated calves compared to nine BRD-related deaths in the saline-treated calves (74%). calves.

Fifty-two tulathromycin injection-treated calves and 27 saline-treated calves from the multi-location field BRD treatment study had *Mycoplasma bovis* identified in cultures from pre-treatment nasopharyngeal swabs. Of the 52 tulathromycin injection-treated calves, 37 (71.2%) calves were categorized as cures and 15 (28.8%) calves were categorized as treatment failures. Of the 27 saline treated calves, 4 (14.8%) calves were categorized as cures and 23 (85.2%) calves were treatment failures.

A Bayesian meta-analysis was conducted to compare the BRD treatment success rate in young calves In the U.S. and nine contemporaness studies conducted in Europhone to buildinomy implementation in the U.S. and nine contemporaneous studies conducted in Europhone. The analysis showed that the BRD treatment success rate in young calves was at least as good as the BRD treatment success rate in in older calves. As a result, tulahtomyrin ingection is considered effective for the treatment of BRD associated with *M. haemolytica*, *P. multocida*, *H. somni*, and *M. bovis* in suckling calves, dairy calves, and yeal calves

and veal calves. In another multi-location field study with 399 calves at high risk of developing BRD, administration of tulathromycin injection resulted in a significantly reduced incidence of BRD (11%) compared to saline-treated calves (59%). Effectiveness evaluation was based on scored clinical signs of normal attitude/ activity, normal respiration, and a rectal temperature of \leq 104% on Day 14. There were no BRD-related deaths in the tulathromycin injection-treated calves compared to two BRD-related deaths in the saline-treated calves. Fifty saline-treated calves cassified as non-responders in this study had *Mycoplasma* thesis clientifies in culture of eact the treatence compared non-base numeric non-based and the saline-treated calves. treated calves. Fifty saline treated calves dassified as non-responders in this study had *Mycoplasma bovis* identified in cultures of post-treatment nasopharyingeal swabs or lung tissue. Two induced inflection model studies were conducted to confirm the effectiveness of tulathromycin injection against *Mycoplasma bovis*. Attal of 166 calves were inoculated intratracheally with field strains of *Mycoplasma bovis*. Men calves became pyrexic and had abnormal respiration scores, they were treated with either tulathromycin injection (2.5 mg/kg BW) subctaneously or an equivalent volume of saline. Calves were obscrued for signs of BRD for 14 days post-treatment, then were euthanized and necropsied. In both studies, mean lung lesion percentages were statistically significantly lower in a 15.0%, sc. 2078, P < 0.0001. BK - Two field studies of M and 15.0% vs. 2078, P < 0.0001. BK - Two field studies in 200 naturally interted calves cancer at the first day on which a call had a no croment. If the normal is 200 naturally interfete calves. The prinary clinical endpoint of these studies was cure rate, defined as a call with no clinical signs of IBK in both sudies, provided that those scores were maintained at the next day of observation, was assessed as a secondary variable. At all Imme points, in both studies, calves on pays 6, 9, 13, 17, and 21. Three to improvement, defined act calves compared to slaine-treated avert as significantly lingher (P < 0.05) for tulathromycin injection readed calves compared to slaine-treated avert as significantly lingher (P < 0.05) for tulathromycin injection readed calves compared to slaine treated avert as significantly lingher (P < 0.05) for tulathromycin injection readed calves compared to slaine-treated avert avert as significantly lingher (P < 0.05) for tulathromycin injection readed calves compared to slaine-treated avert avert avert and the next day of observation, was assessed as a second variable. At all Imme points, in both sublices, here are avert as significantly higher (P <

observation, was assessed as a secondary variable. At all time points, in both studies, the cute rate was significantly higher (P < 0.05) for tulathromycin injection-reteated cakes compared to saline treated cakes. Additionally, time to improvement was significantly less (P < 0.000) in both studies for tulathromycin injection reteated cakes. For pared to saline treated cakes compared to saline treated cakes devices for tulathromycin injection for the treatment of bovine foot rot was evaluated in 170 cattle in two field studies. Cattle diagnosed with bovine foot rot was evaluated in 170 cattle in two field studies. Cattle diagnosed with bovine foot rot was evaluated in 170 cattle in two field studies. Cattle diagnosed with bovine foot rot was evaluated of saline. Cattle were dinically evaluated 7 days after treatment for treatment success, which was based no difused decreases in laten in success which were based no difused for and the latent within the truties the was based on defined decreases in lesion, swelling, and lameness scores. In both studies, the treatment success percentage was statistically significantly higher in tulathromycin injection-treated calves compared with saline-treated calves (60% vs. 8%, P < 0.0001 and 83.3% vs. 50%, P = 0.0088). Swine

Swine In a multi-location field study to evaluate the treatment of naturally occurring SRD, 266 pigs were treated with tulathromycin injection. Responses to treatment were compared to saline-treated controls. Success was defined as a pigwith normal attitude, normal respiration, and rectal temperature of < 104°F on Day 7. The treatment success rate was significantly greater (P ≤ 0.05) in tulathromycin injection-treated pigs (70.5%) compared to saline-treated pigs (46.1%). *M. hyopneuronnae* was isolated from 106 saline-treated and non-treated sentinel pigs in this study. Two induced infection model studies were conducted to confirm the effectiveness of tulathromycin isolaters. *M. hyopneurona* ia not are stafe incorulation interansality and interansal

Two induced infection model studies were conducted to confirm the effectiveness of fulathromycin injection against *M. hyopneumoniae*. 144 pigs were treated with either tulathromycin injection (2.5 mg/kg BW) intramuscularly or an equivalent volume of saline. Pigs were euthanized and necropsied 10 days post-treatment. The mean percentage of gross pneumonic lung lesions was statistically significantly lower (P < 0.0001) for tulathromycin injection-treated pigs than for saline-treated pigs in both studies (8.52% vs. 23.62% and 11.31% vs. 26.42%). The effectiveness of tulathromycin injection for the control of SRD was evaluated in a multi-location natural infection field study. When at least 15% of the study candidates showed clinical signs of SRD, all pigs were enrolled and treated with tulathromycin injection (226 pigs) or saline (227 pigs). Responses to treatment twere evaluated on Day 7. Success was defined as a pig with normal altitude, normal respiration, and rectal temperature of < 104°F. The treatment success rate was significantly vs. 41.2%). **ANIMAI SAFETY**

ANIMAL SAFETY Cattle

Cattle Safety studies were conducted in feeder calves receiving a single subcutaneous dose of 25 mg/kg BW, or 3 weekly subcutaneous doses of 2.5, 7.5, or 12.5 mg/kg BW. In all groups, transient indications of pain after injection were seen, including head shaking and pawing at the ground. Injection site swelling, discoloration of the subcutaneous tissues at the injection site and corresponding histopathologic changes were seen in animals in all dosage groups. These lesions showed signs of nesolving over time. No other drug-related lesions were observed macroscopically or microscopically. An exploratory study was conducted in feeder calves receiving a single subcutaneous dose of 10, 12.5, or 15 mg/kg BW. Macroscopically, no lesions were observed. Microscopically, minimal to mild myocardial depenetation was seen in one of six calves administered 12.5 mg/kg BW and two of six calves administered 15 mg/kg BW. A safety study was conducted in preuminant calves 13 to 27 days of age receiving 2.5 mg/kg BW on 7.5 mg/kg BW once subcutaneously. With the exception of minimal to mild injection site reactions, no drug-related clinical signs or other lesions were observed macroscopically or microscopically. Swine

Swine Safety studies were conducted in pigs receiving a single intramuscular dose of 25 mg/kg BW, or 3 weekly intramuscular doses of 2.5, 7.5, or 12.5 mg/kg BW. In all groups, transient indications of pain after injection were seen, including restlessness and excessive vocalization. Tremors occurred briefly in one animal receiving 7.5 mg/kg BW. Discoloration and edema of injection site tissues and corresponding histopathologic changes were seen in animals at all dosages and resolved over time. No other drug-related lesions were observed macroscopically or microscopically.

STORAGE CONDITIONS

Store below 30°C (68°F), with excursions up to 40°C (104°F). Use this product within 84 days of the first puncture and puncture a maximum of 20 times. If more than 20 punctures are anticipated, the use of automatic injection equipment or a repeater syringe is recommended. When using a draw-off spike or needle with hore diameter larger than 16 gauge, discard any product remaining in the vial immediately after use.

HOW SUPPLIED AROVYN Injectable Solution is available in the following package sizes:

50 ml vial

100 mLvial 250 mLvial 500 mLvial

S00 mL val Approved by FPA under ANADA # 200-715 Tulathromycin (active ingred.) made in China. Formulated in Germany. Distributed by: Intervet Inc. (d/b/a Merck Animal Health), Madison, NJ 07940

Increase the construction of the construction FDA.gov/reportanimalae

